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Abstract

Fifteen years after its licensure, this revision assesses the role of cefditoren facing the current pharmacoepidemiology of
resistances in respiratory human-adapted pathogens (Streptococcus pneumoniae, Streptococcus pyogenes, Haemophilus
influenzae and Moraxella catarrhalis). In the era of post- pneumococcal conjugate vaccines and in an environment of
increasing diffusion of the ftsI gene among H. influenzae isolates, published studies on the cefditoren in vitro
microbiological activity, pharmacokinetic/pharmcodynamic (PK/PD) activity and clinical efficacy are reviewed. Based on
published data, an overall analysis is performed for PK/PD susceptibility interpretation. Further translation of PK/PD data
into clinical/microbiological outcomes obtained in clinical trials carried out in the respiratory indications approved for
cefditoren in adults (tonsillitis, sinusitis, acute exacerbation of chronic bronchitis and community-acquired pneumonia)
is commented. Finally, the role of cefditoren within the current antibiotic armamentarium for the treatment of
community respiratory tract infections in adults is discussed based on the revised information on its intrinsic activity,
pharmacodynamic adequacy and clinical/bacteriological efficacy. Cefditoren remains an option to be taken into
account when selecting an oral antibiotic for the empirical treatment of respiratory infections in the community
caused by human-adapted pathogens, even when considering changes in the pharmacoepidemiology of resistances
over the last two decades.

Key points

� Introduction of pneumococcal conjugate vaccines
has modified the susceptibility profile of circulating
Streptococcus pneumoniae in the community

� Antibiotic pressure in the community has facilitated
the emergence and diffusion of β-lactamase negative
ampicillin-resistant (BLNAR) and β-lactamase posi-
tive amoxicillin/clavulanate-resistant (BLPACR) H.
influenzae isolates, implying resistance to several
oral β-lactams

� The review of the high number of
pharmacodynamic studies carried out with
cefditoren since its licensure shows that cefditoren

maintains its pharmacodynamic activity against the
most prevalent bacterial isolates from community
respiratory infections.

Background
Among the complex niche representing the nasopharyn-
geal microbiota, four bacterial species have in common
humans as exclusive commensals, with no animal or envir-
onmental reservoirs contributing to their life-cycle:
Streptococcus pneumoniae, Streptococcus pyogenes, Hae-
mophilus influenzae and Moraxella catarrhalis, with dif-
ferent turnover rates in nasopharynx. Human to human
transmission, which occurs via respiratory droplets, is crit-
ical for them to persist. Alterations in the ecological niche
or migrations to other niches are responsible for their
change to human-adapted pathogens causing pharyngo-
tonsillitis (S. pyogenes) or otitis, rhinosinusitis and lower
respiratory tract infections (LRTIs) (S. pneumoniae, H.

* Correspondence: prism-ag@hotmail.com
1Research Department, PRISM-AG, Don Ramón de la Cruz 72, 28006 Madrid,
Spain
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Giménez et al. Multidisciplinary Respiratory Medicine  (2018) 13:40 
https://doi.org/10.1186/s40248-018-0152-5

http://crossmark.crossref.org/dialog/?doi=10.1186/s40248-018-0152-5&domain=pdf
mailto:prism-ag@hotmail.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


influenzae and M. catarrhalis). Thus, apart from their
commensalism, they exhibit direct pathogenicity.
Additionally, the indirect pathogenicity of H. influen-

zae and M. catarrhalis protecting S. pyogenes and S.
pneumoniae from the action of some β-lactam antibi-
otics by means of their β-lactamases has been described.
In vivo, formation of biofilms (which are larger when S.
pneumoniae and H. influenzae or M. catarrhalis are
present than when only one species is alone) [1] favors
indirect pathogenicity and intracellular antibiotic deacti-
vation [2]. The coexistence of susceptible and resistant
cells within these bacterial communities increases the
opportunity for horizontal gene transfer during anti-
biotic selection pressure [2]. This gene transfer depends
on the duration of carriage: strains with longer duration
of carriage have a greater risk of antibiotic exposure and
thus, greater risk for acquiring resistance [3]. In turn, re-
sistance implies fitness advantages for bacteria in the
presence of antibiotics, favoring spread of resistant iso-
lates within the community.
Antibiotic resistance significantly impacts on patient’s ill-

ness burden in the community, and patients with
laboratory-confirmed antibiotic-resistant respiratory tract
infections (RTIs) are likely to experience delayed recovery
following antibiotic treatment [4]. In the era prior to licen-
sure of conjugate pneumococcal vaccines (PCV), antibiotic
use was the basic and exclusive force behind resistance pat-
terns in bacteria isolated from community-acquired infec-
tions [5–7] despite of descriptions of correlations between
pneumococcal resistance and educational level, climate
and proportion of young people in the population [5]. At
different geographical areas, positive correlations between
percentages of macrolide resistance in S. pneumoniae and
S. pyogenes were described [8], and resistance was associ-
ated with macrolide consumption (mainly compounds

exhibiting long half-life) [7, 9, 10]. Similarly, β-lactam con-
sumption (mainly oral 2nd generation cephalosporins) was
associated with penicillin resistance in S. pneumoniae [9].
A global ecological relationship of resistance between
penicillin-resistant S. pneumoniae, erythromycin-resistant
S. pneumoniae, erythromycin-resistant S. pyogenes and
ampicillin-resistant H. influenzae was described [11], re-
inforcing the idea of consumption of certain antibiotics as
driver of resistances in human-adapted respiratory patho-
gens in the community.
In the post-vaccine era, this situation has completely chan-

ged with a decrease in the prevalence of penicillin-resistant
S. pneumoniae (with lower changes in erythromycin resist-
ance in both streptococcal species) and the emergence of
ampicillin-resistant phenotypes not related to β-lactamase
production in H. influenzae. These complex dynamics have
been influenced by different factors in the present century:
vaccine pressure and natural serotypes fluctuations,
co-selection of resistances, selection of co-resistances, and
antibiotic consumption patterns according to the population
structure [12], among others.
Figure 1 shows the steps analyzed in this extensive

revision.

Pharmacoepidemiology of resistances in human-
adapted respiratory pathogens
Although they have in common being human-adapted
pathogens colonizing the nasopharynx as their natural
ecological niche, not all of them have equally responded
(on the basis of non-susceptibility emergence and dis-
semination) to the preventive and therapeutic measures
introduced. Spread of resistance in S. pyogenes and M.
catarrhalis, limited to certain antibiotics, contrasts with
emergence and spread of resistance to β-lactams and

Fig. 1 Cefditoren: steps analyzed from Microbiology to Clinical Use
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macrolides in S. pneumoniae and H. influenzae, driving
to more complex scenarios.
S. pyogenes is uniformly susceptible to β-lactams and,

among oral cephalosporins, cefditoren exhibits the highest
intrinsic activity, with MIC90 values ≤0.06 mg/l. [13–15] Re-
sistance to erythromycin (implying resistance to clarithro-
mycin and azithromycin) varies from < 10% (USA, Baltic
countries, Romania), to 10–20% (Poland, Czech Republic,
Spain) and 25–35% (Slovakia, Hungary, Hong Kong), being
up to 93.5% in China [13, 16–20].
Almost 100% strains of M. catarrhalis are β-lactamase

producers [21]; MIC90 values of cefditoren (range from
0.25 to 0.5 mg/l) are lower than those of amoxicillin/cla-
vulanic acid (range from 0.25 to 2 mg/l) and cefuroxime
(range from 2 to 8 mg/l [14, 15, 22, 23].

Streptococcus pneumoniae: the post-PCV13 scenario
Based on the most common pediatric serotypes, PCV7 was
developed and introduced for universal immunization of
healthy children in most developed countries in 2000–1.
However, detection of emerging new serotypes in the late
PCV7 period led to the inclusion of six additional serotypes
in the new PCV13 in 2010. Since then, decreases in inva-
sive pneumococcal disease (IPD), not only in children but
also in adults due to herd effect [24–27], as well as in
PCV13 serotypes involved in non-invasive diseases, have
been described [25, 27]. Although some studies [28–30],
but not others [24, 31], have found slight increases in
non-PCV13 serotypes causing IPD, individually none of
the non-PCV13 serotypes has shown a significant increase
[32], in contrast to the increase in serotype 19A (with its
associated resistant sequence types [33]) after PCV7 imple-
mentation [33–35].
Since susceptibility is strongly linked to serotypes, tar-

geting prevalent capsular serotypes with PCVs is ex-
tremely effective in reducing resistant infections [36].
While in countries that lack a significant PCV coverage >
40% isolates are penicillin-resistant [36], in those where
PCV13 was introduced, antibiotic–nonsusceptible IPD
has decreased in all age groups [24, 25, 37], as well as anti-
biotic–nonsusceptible isolates colonizing the nasopharynx
in children [38]. Data from 2013 in USA showed that the
proportions of non-susceptible IPD cases were around
10% for penicillin and 33% for macrolides in children, and
around 6 and 28%, respectively, in adults [37]. These high
nonsusceptibility rates to macrolides in USA are lower
than those found in a surveillance from 11 Asian coun-
tries reporting a mean percentage of resistance to erythro-
mycin as high as 72.7%, with the highest rates in China
(96.4%), Taiwan (84.9%) and Vietnam (80.7%) [39]. An-
other report from Thailand confirmed high resistance
rates to erythromycin (51.3%) [40] in Asia.
Few pneumococcal surveillance studies including cefdi-

toren among the antimicrobials tested have been published

in the last 5 years. Studies published in the previous dec-
ade (2007–2010) (pre-PCV13 era) showed that among
penicillin-susceptible isolates, cefditoren MIC90 values
ranged from ≤0.03 to 0.06 mg/l. [14, 15, 41–48] Against
penicillin-intermediate strains, values increased to 0.25–
0.5 mg/l while among penicillin-resistant strains, they
ranged from 0.5 to 1 mg/l. [14, 15, 41–48] For amoxicillin
and cefuroxime, MIC90 values for penicillin-susceptible
isolates ranged from 0.12 to 0.25 mg/l [14, 15, 41–47] for
cefuroxime and from 0.03 to 0.25 mg/l for amoxicillin [14,
15, 42–47]. For penicillin-intermediate strains, values
ranged from 4 to 8 mg/l [14, 15, 41–47] for cefuroxime
and from 1 to 4 mg/l for amoxicillin [14, 15, 42–47], while
for penicillin-resistant strains, they ranged from 8 to
32 mg/l for cefuroxime and from 8 to ≥16 mg/l for amoxi-
cillin [14, 15, 41–47]. All these studies showed that cefdito-
ren exhibited the highest in vitro intrinsic activity
compared with other oral β-lactams [14, 15, 41–48]. Other
studies in the last decade not distributing strains by peni-
cillin susceptibility also showed MIC50/MIC90 values of
cefditoren lower than those of other oral cephalosporins:
≤0.06 and 1 mg/l, respectively, in a study in 11 Asian
countries [49], and ≤ 0.015 and 0.125 mg/l, respectively, in
a Spanish surveillance [16]. The last surveillance study (in-
cluding cefditoren among the antimicrobials tested) found
in the literature, a surveillance study in Japan, showed
MIC50/MIC90 values of cefditoren of 0.125/0.5 mg/l. [50]
The highest activity of cefditoren was also demonstrated

in an in vitro study comparing cidal activity of serum
achievable concentrations of third-generation oral cepha-
losporins (cefditoren, cefpodoxime, cefdinir, and cefixime),
using cefotaxime as control drug, against pneumococcal
strains distributed by cefotaxime MICs (0.5 to 2 mg/l)
[51]. Against strains with cefotaxime MIC > 1 mg/l, only
cefditoren (at 0.5–1 mg/l concentrations, which are lower
than the maximum concentration in serum) achieved >
90% reduction of initial inocula [51]. Another study com-
paring cidal activity of cefditoren with that of other
β-lactams (amoxicillin/clavulanic acid, cefuroxime, cefix-
ime and cefpodoxime) and levofloxacin showed that cefdi-
toren was the only agent achieving, at concentrations
equal to 2× MIC, significant bactericidal activity (≥3 log
reduction of initial inocula within 4 h) against penicillin-
susceptible and resistant S. pneumoniae [52].
These studies, carried out in the pre-PCV13 era, dem-

onstrated the high comparative intrinsic activity (in
terms of MIC and bactericidal activity) of cefditoren
against S. pneumoniae. In the post-PCV13 era, consider-
ing that, as stated, the vaccine implementation has re-
duced the prevalence of pneumococcal resistance in the
community [24, 25, 36–38] by targeting most resistant
serotypes, the number of penicillin-resistant isolates with
high cefditoren MICs (i.e > 0.25 mg/l) should had neces-
sarily been reduced.
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Haemophilus influenzae
Traditionally, β-lactamase production was the mechanism
of resistance to aminopenicillins in non-typeable H. influ-
enzae (NTHi). However, antibiotic pressure by amoxicillin/
clavulanate and oral cephalosporins contributed to the
spread of non-enzymatic resistance mechanisms linked to
the ftsI gene [53]. In the past decade, many countries
experimented a rapid increase in genetically-defined
β-lactamase negative ampicillin-resistant (gBLNAR) iso-
lates, accounting for 15–30% of all isolates, among others,
in Europe, Australia and USA, with up to 50% in Japan
[54–59]. In Spain BLNAR isolates increased in parallel with
decreases in β-lactamase producing-isolates [60], and the
last published study determining susceptibility of invasive
H. influenzae isolates showed up to 19% gBLNAR isolates
compared with 16.9% isolates resistant due to β-lactamase
production [61]. Similarly, a recent report from Japan
showed the lower percentage of ampicillin-resistant strains
due to β-lactamase production (5.6%) than to BLNAR
(37.2%) among NTHi respiratory isolates [50]. In Sweden,
the increase in β-lactam resistance among invasive H.
influenzae isolates has also been attributed to the signifi-
cant increase in BLNAR isolates [62].
Isolates exhibiting both mechanisms of resistance

(β-lactamase production and mutations in the ftsI gene),
the so-called β-lactamase positive amoxicillin/clavulanic
acid-resistant (BLPACR) isolates, account for lower pro-
portions than BLNAR isolates [16, 58, 60], also among
invasive isolates [61], generally with percentages lower
than 5%. However, higher and overtime constant rates of
BLPACR isolates [59] and marked increases from 2011
to 2013, reaching 19% in China [63], have been reported.
Published data show that both against β-lactamase posi-

tive and negative NTHi isolates, MIC90 values of cefdito-
ren (range from ≤0.03 to 0.06 mg/l) are 5–7 dilutions
lower than those of amoxicillin/clavulanic acid or cefurox-
ime (MIC90 range from 1 to 8 mg/l for both compounds)
[14, 15, 22, 41, 44]. PBP3 modifications subsequent to ftsI
gene mutations could decrease susceptibility not only to
aminopenicillins but also to some oral cephalosporins as
cefaclor or cefuroxime [60, 61, 64]. Against BLNAR iso-
lates MIC90 values were 0.03–0.06 mg/l for cefditoren;
values markedly lower than those for amoxicillin/clavula-
nic acid (4 mg/l) and for cefuroxime (2–16 mg/l) [14, 15,
65]. Recent reports have confirmed the high intrinsic ac-
tivity of cefditoren against NTHi independently of the
production of β-lactamase or the BLNAR phenotype [66,
67] or the presence of both resistance mechanisms [65].
On the other hand, NTHi can be considered intrinsically
resistant to macrolides, being its resistance associated with
the presence of efflux pumps in virtually all strains [68].
Table 1 resumes the comparative intrinsic activity of

cefditoren in terms of MIC50/MIC90 values obtained in
the different studies.

Revisiting cefditoren pharmacokinetic/
pharmacodynamic (PK/PD) data to interpret
susceptibility [69–71]
Fortunately, cefditoren is a drug with high number of
pharmacodynamic studies published in the literature.
Pharmacodynamics constitute one of the major basis for
setting breakpoints by Regulatory Agencies [72]. For this
reason, and since there are not established CLSI or
EUCAST breakpoints for cefditoren to guide interpret-
ation of susceptibility data, for clinical decision making,
the analysis of published pharmacodynamic data is es-
sential to delimit susceptibility. Table 2 shows a sum-
mary of the PK/PD studies performed with cefditoren
[73–85]. Most of the studies carried out against S. pneu-
moniae included isolates exhibiting a wide range of cef-
ditoren MIC values (from 0.125 to 4 mg/l). For PK/PD
interpretation, these pneumococcal studies acquire rele-
vance because in the studies carried out with H. influen-
zae or S. pyogenes it was not possible to test the wide
range of MIC values required for evaluation, due to the
very high intrinsic activity of cefditoren against both spe-
cies, as has been commented. Importantly, some of the
pharmacodynamic studies addressed the high protein
binding rate of cefditoren, which is ≈88% [86]. Through
the addition of human serum or albumin in the tubes/
devices used in in vitro tests [73–75] or animal models in
mice (where the experimentally measured protein binding
rate, 87%, was similar to the rate in humans) [84],
pharmacodynamics were determined in more realistic sit-
uations than using extrapolated free drug concentrations.
One remarkable fact of cefditoren pharmacokinetics is

the different bioavailability in the fast/fed states. The ad-
ministration of cefditoren-pivoxil following a high fat
meal results in a 70% increase in mean AUC and 50% in-
crease in mean Cmax compared to administration of
cefditoren-pivoxil in the fasted state [87]. Therefore,
conclusions of pharmacodynamic studies are different
depending on the fed/fast condition of subjects included
[85, 88], and for this reason the prescribing information
recommends cefditoren intake with meals to enhance
absorption [87].
Essential points guiding susceptibility interpretation

are the accepted cut-off values of the PK/PD index pre-
dicting efficacy for β-lactams (percentage of dosing
interval that antibiotic concentrations exceed the MIC;
t >MIC), set at 40% for clinical cure and at 33% for bac-
teriostasis [89, 90]. The FDA and CLSI definitions of the
“susceptible” category involve the bacteriostatic endpoint
(33% t >MIC) since “susceptibility” is defined as the
likely inhibition of the pathogen if the antimicrobial
compound reaches the concentration usually achievable
after administration of the recommended dose [91, 92].
Several susceptibility breakpoints have been proposed

for cefditoren [93–95], ranging from ≤0.125 mg/l
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(included in the FDA prescribing information) [87] to
≤0.5 mg/l (approved by the Reference Member State,
Spain, during the Mutual Recognition Procedure in Eur-
ope) [96]. In vivo, a pneumococcal sepsis model infect-
ing mice with isolates exhibiting exceptionally high
MICs of cefditoren (1–2 mg/l) exceeding the proposed
susceptibility breakpoints, showed that cefditoren t >
MIC of ≈35% (free t >MIC of ≈20%) produced 100%
survival compared with 0% survival in untreated animals
[84]. A free t >MIC value of ≈20% was also related to >
99.9% reduction in bacterial load of two different
pneumococcal isolates (MICs of 0.25 μg/ml) in an in
vitro pharmacodynamic simulation with physiological al-
bumin concentrations and 86% protein binding rate in
the device [75]. These two studies demonstrated that the
limitation of the activity of cefditoren by protein binding
is far from absolute, being the activity of total concentra-
tions in the presence of albumin/serum higher than the
one exhibited by calculated free concentrations.
The range of proposed breakpoints (from ≤0.125 to

≤0.5 mg/l) is well supported by a Monte Carlo simula-
tion of cefditoren investigating coverage by concentra-
tions achieved in serum after 400 mg oral dosing (after
meals) [97] according to different criteria: a) By using
total concentrations and the bacteriostatic criterion (33%
t >MIC), cefditoren covered strains inhibited by MICs
up to 0.5 mg/l, b) By using extrapolated free drug con-
centrations and 33% t >MIC, coverage was achieved for
strains inhibited by MICs up to 0.25 mg/l, and c) By
using extrapolated free drug concentrations and the cri-
terion of 40% t >MIC, strains exhibiting MICs up to
0.12 mg/l were covered [85].
Evidently, the application of one or another criteria does

not affect susceptibility rates of H. influenzae and S. pyo-
genes since even by applying the strictest PK/PD

breakpoint for cefditoren (≤0.125 mg/l), susceptibility rates
were almost 100% [16, 22, 41]. With respect to S. pneumo-
niae, Table 3 shows ranges of percentages of susceptibility
against penicillin-susceptible (MIC of penicillin ≤0.06 mg/
l), penicillin-intermediate and penicillin-resistant (MIC of
penicillin ≥2 mg/l) pneumococcal isolates, calculated with
MIC distributions from published studies [41–45] by ap-
plying CLSI breakpoints for amoxicillin and cefuroxime,
and the three proposed breakpoints for cefditoren. As ob-
served, the decrease in susceptibility to penicillin affects
more the susceptibility to cefuroxime than the susceptibil-
ity to amoxicillin. For the susceptibility to cefditoren, the
impact of penicillin non-susceptibility is dependent on the
breakpoint value considered: high for ≤0.125 mg/l but
negligible for ≤0.5 mg/l (with 95% isolates susceptible to
cefditoren whether they were penicillin- susceptible, inter-
mediate or resistant). This illustrates the importance of
having breakpoints for susceptibility interpretation of
microbiological data.

From PK/PD interpretation to clinical data in adults
Pharmacodynamic breakpoints can be related with bacter-
ial eradication and subsequent therapeutic outcome [98].
For this reason, microbiological evaluation in clinical trials
provides the best quality data to support breakpoints.
However, despite the percentage of resistance in the com-
munity, in a clinical trial it is difficult to have enough
number of patients infected by resistant bacteria to reach
conclusions. To overcome this, data from microbiological
evaluation in clinical trials of community-acquired pneu-
monia (CAP) and acute exacerbations of chronic bron-
chitis (AECB) carried out with cefditoren were pooled and
analyzed in order to increase the number of evaluable pa-
tients. In that analysis, 100% penicillin non-susceptible
(MIC ≥0.12 mg/l) isolates of S. pneumoniae in the

Table 1 Comparative intrinsic activity: Range (mg/l) of MIC50 and MIC90 from published studies

References Amoxicillin/clavulanic acid Cefuroxime Cefditoren

MIC50 MIC90 MIC50 MIC90 MIC50 MIC90

Streptococcus pyogenesa 13–15 ≤0.012–0.06 ≤0.012–0.12 0.03–0.06 0.12 ≤0.03 ≤0.03–0.06

Streptococcus pneumoniaeb 14,15,41–48

Penicillin-susceptible ≤0.015–0.06 0.03–0.25 ≤0.03 0.12–0.25 ≤0.015 ≤0.03–0.06

Penicillin-intermediate 0.25–1 1–4 0.5–4 4–8 0.06–0.25 0.25–0.5

Penicillin-resistant 2 - ≥16 8 - ≥16 4–8 8–32 0.25–0.5 0.5–1

Haemophilus influenzae

β-lactamase negative 14,15,22,41,44 0.25–1 1–8 0.25–2 1–8 ≤0.08 ≤0.03–0.06

β-lactamase positive 14,15,22,41,44 0.5–2 2–4 1–2 2–8 ≤0.08 ≤0.03–0.06

BLNAR 14,15,65 2 4 0.5–4 2–16 ≤0.08 0.03–0.06

BLPACR 65 4 8 4 16 0.03 0.06

Moraxella catarrhalis (β-lactamase positive) 14,15,22,23 0.12–0.5 0.25–2 1 2–8 0.06–0.12 0.25–0.5
aIn terms of ampicillin (ref. [13])
bIn terms of amoxicillin (ref. [14, 15, 43–46])
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Table 2 Summary of PK/PD studies carried out with cefditoren (CDN)

Ref. Type of study Strains Comparators Main conclusion

[73] Killing curves in the
presence/absence of
human albumin
(Cmax: 4.1 mg/l)

S. pneumoniae
(CDN MICs: 0.12–0.5 mg/l)

_ The activity of cefditoren should not be linked
exclusively with the theoretical unbound fraction
extrapolated from the plasma concentration.

[74] Killing curves in the
presence/absence of
human albumin or
human serum
(Cmax: 4.1 mg/l)

S. pneumoniae
(CDN MICs: 0.12–0.5 mg/l)

_ The presence of 90% human serum did not limit
bactericidal activity as did the use of concentrations
similar to free-drug.

[75] In vitro computerized
pharmacodynamic
simulation in the
presence of 75%
human serum

S. pneumoniae
(CDN MICs: 0.25–0.5 mg/l)

_ Cefditoren physiological concentrations exerted
antibacterial activity against strains exhibiting MICs
of 0.25 and 0.5 m/l under protein binding conditions
similar to those in humans (experimentally measured)

[76] In vitro computerized
pharmacodynamic
simulation (total vs.
free concentrations)

H. influenzae
(including BLNAR and BLPACR)

Co-amoxiclav The experimental bactericidal activity of cefditoren
(both total and free concentrations) was maintained
over the dosing interval regardless of the presence of
mutation in the ftsI gene or β-lactamase production,
in contrast to co-amoxiclav.

[77] In vitro computerized
pharmacodynamic
simulation

S. pneumoniae
(amoxicillin MIC > penicillin MIC)
(CDN MICs: 0.12–1 mg/l)

Cefuroxime
Co-amoxiclav

Bactericidal activity at 12 and 24 h was obtained against
all strains with cefditoren, but not with comparators.

[78] In vitro computerized
pharmacodynamic
simulation

S. pneumoniae (mixed inocula)
(CDN MICs: 0.015, 0.5, 1 mg/l)

Cefuroxime Cefixime
Cefaclor
Amoxicillin

Against penicillin resistant strains, cefditoren (but not
comparators) decreased the initial bacterial load all along
the simulation, without regrowth and with lower selection
of resistant subpopulations

[79] In vitro computerized
pharmacodynamic
simulation

H. influenzae
(including BLNAR and BLPACR)

Cefuroxime
Co-amoxiclav

Cefditoren exhibited the highest bactericidal activity
maintained over time against ampicillin-resistant
H. influenzae, regardless of beta-lactamase production
and/or BLNAR phenotype.

[80] In vitro computerized
pharmacodynamic
simulation

H. influenzae β−

H. influenzae β+
BLNAR
BLPACR
(mixed inocula)

Cefuroxime
Co-amoxiclav

Cefditoren offered higher antibacterial effect than
comparators due to its higher activity against
beta-lactamase-producing strains and those carrying
ftsI gene mutations. BLNAR and BLPACR strains were
selected by cefuroxime and co-amoxiclav, respectively.

[81] In vitro computerized
pharmacodynamic
simulation

S. pyogenes
S. pneumoniae
H. influenzae β+
BLPACR
(mixed inocula)

Amoxicillin
Co-amoxclav

Cefditoren (but not comparators) completely countered
indirect pathogenicity and eradicated S. pyogenes and
both H. influenzae strains.

[82] In vitro computerized
pharmacodynamic
simulation in media
containing ftsI DNA

H. influenzae β−

H. influenzae β+
Co-amoxiclav Cefditoren (but not co-amoxiclav) was bactericidal and

countered intrastrain ftsI gene diffusion

[83] In vitro study assessing
by flow cytometry
the deposition/binding
of components of
the complement system
to bacterial cells

S. pneumoniae Ceftriaxone Increased recognition of S. pneumoniae by the
complement system in the presence of sub-inhibitory
concentrations of cefditoren

[84] Mice sepsis model
(pre-immunized vs.
non pre-immunized
mice)

S. pneumoniae
(CDN MICs: 1, 2, 4 mg/l)

_ In non pre-immunized animals, t > MIC values for
CDN of approximately 35% (total) and approximately
19% (free) were associated with 100% survival, with
lower values in pre-immunized animals

[85] Monte Carlo simulation _ _ Coverage with total concentrations:
a. criterion of 40% t > MIC: MICs ≤0.5 mg/l
b. criterion of 33% t > MIC: MICs ≤0.5 mg/l
Coverage with extrapolated free concentrations:
a. criterion of 40% t > MIC: MICs ≤0.12 mg/l
b. criterion of 33% t > MIC: MICs ≤0.25 mg/l
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cefditoren 400 mg group (n = 20), 16 of 19 (84.2%) strains
in the 200 mg group, and 16 of 17 (94.1%) strains in the
comparator group were eradicated or presumably eradi-
cated [99]. Among S. pneumoniae isolates showing peni-
cillin resistance (MIC ≥2 mg/l), 17 out of 18 (94.4%)
isolates from patients in both cefditoren arms were eradi-
cated or presumably eradicated compared with 10 out of
11 (90.9%) in the comparator group [99].
This microbiological efficacy was accompanied by clin-

ical efficacy, with cefditoren showing similar percentages
of clinical cure than antimicrobials used as comparators.
Table 4 summarizes published clinical outcomes with
cefditoren in clinical trials of the different approved re-
spiratory indications [99–109].
In pharyngotonsillitis studies, since all patients included

in clinical trials had a pre-treatment positive culture, the
relationship between the microbiological and clinical re-
sponse obtained was investigated. The percentage of fa-
vorable clinical response was significantly higher (p < 0.01)
in patients showing bacteriological eradication (≥98.5%)
than in those showing bacteriological persistence (≤51.4%)
[100], evidencing the relationship between microbiological
and clinical responses. Overall, the post-treatment
microbiological response (eradication) was significantly (p
< 0.01) higher with cefditoren versus penicillin (used as
comparator): 90.4% versus 82.7% at the end-of-treatment
visit, and 84.7% versus 76.7% at the end of follow up visit,
respectively [100]. In a recent revision of eight published

clinical studies, failure rates with penicillin in the treat-
ment of pharyngotonsillitis ranged from 14 to 40%, and
one of the main reasons advocated by the author was
penicillin inactivation by β-lactamases present in the en-
vironment produced by β-lactamase producing bacteria
[110], as H. influenzae. This “indirect pathogenicity” was
demonstrated in a pharmacodynamic simulation using a
mixed inocula of S. pyogenes, penicillin-resistant S. pneu-
moniae, β-lactamase positive NTHi and a BLPACR strain
exposed to simulated serum concentrations of amoxicillin,
amoxicillin/clavulanic acid or cefditoren [81]. Of the three
compounds, cefditoren, stable to β-lactamases was the
unique compound that completely countered the indirect
pathogenicity and eradicated both β-lactamase positive or-
ganisms [81]. For the BLPACR strain the accumulation of
two resistance traits (β-lactamase production and ftsI
gene) represented a competitive advantage in the presence
of amoxicillin/clavulanic acid [82], this compound not be-
ing able to completely counter indirect pathogenicity as
cefditoren did. These data acquire relevance since
antibiotic-treated individuals are sources for spread of
β-lactamase producing bacteria to other individuals [110],
and carriage of H. influenzae has been associated with vac-
cination with PCVs [111].
Antibiotic degradation via β-lactamases enabling growth

of susceptible cells in their vicinity [2, 112], even across
species, has been demonstrated in other in vitro studies
and in animal models, favoring S. pneumoniae growth in

Table 3 Ranges of susceptibility against penicillin-susceptible (≤0.06 mg/l), penicillin-intermediate and penicillin-resistant (≥2 mg/l)
pneumococcal isolates, calculated with MIC distributions from published studies [41–45] by applying CLSI breakpoints (amoxicillin,
cefuroxime) and the three proposed breakpoints for cefditoren

Antibiotic Penicillin susceptible isolates Penicillin intermediate isolates Penicillin resistant isolates

Amoxicillina (≤2 mg/l) 100% 78.4–100% 17.5–76%

Cefuroxime (≤1 mg/l) 99.7–100% 33.8–67.6% 0–0.4%

Cefditoren

≤ 0.125 mg/l 99.1–100% 37.2–71.2% 0–0.4%

≤ 0.25 mg/l 100% 67.6–88.6% 15.2–57.3%

≤ 0.5 mg/l 100% 99.3–100% 95.3–100%
aAmoxicillin/clavulanic acid in references [41, 42]

Table 4 Percentage of responders in the clinical evaluation of cefditoren efficacy in clinical trials. Published data

References Cefditoren 200 mg bid Cefditoren 400 mg bid Comparatorsa

EOTb EFc EOTb EFc EOTb EFc

Pharyngotonsillitis 90-92 93.4 – 98.6 88.9–99.2 – – 88.6–97.1 84.4–100

Rhinosinusitis 90,93 81.3–95.2 63.6–91.0 76.5–83.1 70.2–71.9 75.5–97.7 66.2–95.1

AECBd 89,94–97 80–88.8 79.7–83.0 84.4–95.5 78.1–85.6 75.0–98.9 79.8–85.7

CAPe 89,98,99 87.2 – 91.8 88.4–87.8 89.2–90.1 83.7–87.2 90.3–92.2 87.8–93.8
aPenicillin V or VK (90–92) for pharyngotonsillitis, amoxicillin/clavulanic acid (90,93) or cefuroxime (90) for rhinosinusitis, cefuroxime (89,94,96) or clarithromycin
(89,95) for AECB, and amoxicillin/clavulanic acid (89,98), and cefpodoxime (89,99) for CAP
bEOT = End of Treatment
cEF = End of Follow up
dAECB = Acute exacerbation of chronic bronchitis
eCAP = Community-acquired pneumonia
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the presence of H. influenzae or M. catarrhalis [1, 2, 113].
In the context of biofilms, interactions between species
are facilitated, and this may explain the tendency of differ-
ent species to occur together [114], as H. influenzae and S.
pneumoniae, which form a much larger biofilm together
than either bacterium does on its own [115]. This is one
of the reasons for the increasing interest on biofilms in
the investigational field. One of the major goals in modern
clinical microbiology is the development of strategies cap-
able of reducing biofilm infections related to chronic con-
ditions due to the difficulty for antibiotics in eradicating
bacteria within these structures (due to difficulties in
reaching bacterial cells or diminished bacterial growth
rate, leading to persistence). Microorganisms typically col-
onizing the human respiratory tract make full use of the
biofilm strategy when causing non-invasive disease
(chronic bronchitis, sinusitis and otitis).
In chronic bronchitis, antibiotic therapy overcomes the

symptoms caused by waves of planktonic cells released
from the biofilm during exacerbations of the disease but
fails to eradicate infection as sessile cells are inherently less
affected [116]. Due to these facts not only time to eradica-
tion of symptoms is an endpoint in clinical trials with anti-
biotics against exacerbations, but also time to relapse is
increasingly used as endpoint. In healthy lungs, there is a
transient microbiome of micro-aspirated upper airway mi-
crobial flora being cleared by normal lung defense mecha-
nisms [117]. Chronic exposure to cigarette smoke results
in higher loads of NTHi and S. pneumoniae in lungs [118],
and these potential pathogenic microorganisms have been
detected in approximately 25% of patients with chronic
obstructive pulmonary disease (COPD) during stable dis-
ease [119]. COPD and subsequent AECBs (with related
presence of released planktonic cells) are associated with
biofilms [120–123], with a relevant role for H. influenzae.
In addition, COPD patients with frequent exacerbations
show an increase in inflammation in the upper airways
contributing to the progression of the disease [124]. Anti-
biotics active against planktonic cells and able to interfere
or decrease biofilm development may offer clinical advan-
tages [125]. Additionally, the use of antibiotics may also re-
duce inflammatory parameters [107]. Cefditoren showed
to interfere biofilm formation in a study comparing cefdi-
toren (0.03 mg/l) with amoxicillin/clavulanic acid (1/
0.5 mg/l) that concluded that both compounds were able
to reduce biofilm formation by the 10 pneumococcal iso-
lates tested, with significant higher reductions in the case
of cefditoren [126]. With respect to inflammation, one
study comparing cefditoren and levofloxacin found that
the use of both antimicrobials was associated with signifi-
cant reductions of IL-6 and KL-6, two mediators of lung
inflammation and epithelial damage [107, 127].
The acquisition of a new strain of H. influenzae (respon-

sible for 13–50% of AECBs [128, 129]), S. pneumoniae or

M. catarrhalis has been described as a fact increasing the
risk of exacerbation [130]. With respect to S. pneumoniae,
it has been reported that new episodes occurring within
the first 3 months after a previous episode show a high
probability of being caused by the same strain, an import-
ant feature for election of empiric therapy [131]. Based on
its in vitro activity against human-associated respiratory
pathogens (Table 1) and concentrations in bronchial mu-
cosa of 0.56–1.04 mg/kg [127], cefditoren provides ad-
equate focal coverage in AECB, as demonstrated by
clinical trials (Table 4). One of the clinical trials of AECB
treated with cefditoren investigated the relationship be-
tween the clinical and bacteriological response, and sug-
gested that the response to the antibiotic was more rapidly
seen in signs that depend on the bacterial location (more
rapid and greater decrease over time in sputum volume,
and purulence and rales and rhonchi) than in those de-
pending in part on previous structural damage [104]. In
this trial, clinical success by key baseline pathogen was
84.0% vs. 82.5% for NTHi, and 92.3% vs. 81.3% for S. pneu-
moniae for cefditoren vs. cefuroxime, respectively [104].
Another mixed infection (mainly, S. pneumoniae and

H. influenzae) involving biofilms is rhinosinusitis, where
cefditoren has shown percentages of clinical efficacy
similar to those of AECB at the end of treatment in clin-
ical trials (Table 4).

The role of cefditoren in the treatment of LRTIs
Further non-clinical studies have corroborated the ad-
equacy of cefditoren in the treatment of LRTIs. The TOM
probability model was used to predict the likelihood of
clinical success in AECB considering, among other fac-
tors, the likelihood of spontaneous resolution [132]. The
study concluded that fluoroquinolones, cefditoren and
high doses of amoxicillin/clavulanic acid were the antimi-
crobials that highest predict clinical efficacy in the treat-
ment of AECB in contrast to cefaclor and macrolides
(with predictions not much higher than that of placebo)
[132]. These results are in accordance with a 15-year lon-
gitudinal study of COPD showing that macrolides were in-
effective in eradicating H. influenzae [133].
Using the Delphi methodology to assess the consensus

on the most appropriate strategy for acute LRTIs, 71%
agreement was reached on the statement that empiric
therapy with antibiotics characterized by a resistance pro-
file above the 10–20% threshold and the non-protected
β-lactams should be avoided [134]. This, together with the
TOM probability study [132] points to discard macrolides
as treatment considering their lack of PK/PD activity
against H. influenzae, a pathogen potentially involved.
Consensus (78% agreement) was also reached on the need
to use antibiotics able to target emergent BLNAR and
BLPACR isolates to prevent intra-species diffusion of
resistant strains when treating AECB [134]. In vitro,
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cefditoren (in contrast to amoxicillin/clavulanic acid)
demonstrated to counter intra-strain diffusion and spread
of nonenzymatic resistance mechanisms (ftsI gene) in a
pharmacodynamic simulation including several NTHi
strains [82]. Consensus (96% agreement) was also reached
on the statement that among third-generation cephalo-
sporins, cefditoren has a particularly balanced spectrum,
the 400 mg dose every 12 h covering penicillin-resistant
pneumococci [134].
Apart from the use of cefditoren in the treatment of

mild to moderate CAP [87, 96], cefditoren may have a role
as oral treatment following intravenous treatment with
third generation cephalosporins. Among others, IDSA and
ATS guidelines recommend a switch to oral antibiotics for
the treatment of stable hospitalized patients with CAP as
soon as the patient is improving [135, 136]. A very high
consensus (93%) was reached in the Delphi-based analysis
on the statement that cefditoren is the best switch for
intravenous third generation cephalosporins (cefotaxime,
ceftriaxone) because of the similar spectrum and the high-
est intrinsic activity [134]. In this sense, cefditoren has
been included as recommended drug for switch therapy
after intravenous treatment with third generation cephalo-
sporins in several documents [137–139], in contrast to
cefuroxime which does not provide the required high in-
trinsic activity and adequate pharmacodynamics [139].
In a meta-analysis of six randomized clinical trials in-

cluding 1219 patients hospitalized with moderate to severe
CAP, the authors concluded that early conversion to oral
antibacterial treatment appeared to be as effective as trad-
itional intravenous treatment and was associated with
fewer drug-related adverse events and shorter hospital
stays [140], thus also reducing associated costs. In the
treatment of LRTIs, the price of the antibiotic therapy does
not represent the most affecting health care cost. In the
Delphi-based approach, high consensus was reached on
the statement that the price of the initial antibiotic therapy
does not represent the most affecting health care cost
(88% consensus) [134]. Switch from parenteral to oral anti-
biotic therapy reduces length and costs of hospitalization,
and the risk of hospital-acquired infections, improving pa-
tient’s quality of life as well (100% agreement) [134]. On
the contrary, indirect costs related to failures by resistant
bacteria may have considerable influence [141]. In this
sense, in a retrospective analysis of CAP treatment, signifi-
cantly higher percentages of treatment failures were ob-
tained in metropolitan areas with ≥25% resistance than in
those with lower resistance rates, with an increase in 33%
of costs in the areas with resistance rates higher than 25%
[141, 142]. In a cost-effective analysis carried out in three
countries, first-line treatment effective against the major
CAP pathogens (including strains resistant to other anti-
microbials) resulted in better clinical outcomes and lower
treatment costs [143].

In addition to monetary costs, selection of resistance
has a social cost derived from the impact of resistance in
future infections in the community. The challenge for in-
stitutions and individual clinicians is to consider the po-
tential impact of each antibiotic prescription on resistance
[136]. Low potential of resistance selection and ecological
consideration for human microbiota are two desirable fea-
tures in antibiotic treatment [144]. Non-clinical studies
carried out with cefditoren, which constitute the largest
documentation in the ecological field for all antimicro-
bials, suggest that cefditoren possesses advantages with re-
spect to its ability for countering diffusion and selection of
resistance [145] in S. pneumoniae [78, 81] and H. influen-
zae [76, 79–82].

Conclusions
Theoretically, the 15 years passed since its licensure
should not have harmed the intrinsic activity of cefditoren
against the respiratory human-adapted pathogens but
have probably improved it somewhat since, maintaining
its high activity against H. influenzae (regardless the in-
crease of BLNAR and BLPACR isolates), M. catarrhalis
and S. pyogenes, the percentage of penicillin-resistant S.
pneumoniae has decreased, at least in countries where
PCVs have been included in vaccination calendars. Due to
this, H. influenzae has acquired more relevance, and the
good activity of cefditoren against this species and its abil-
ity to counter diffusion of the ftsI gene and the indirect
pathogenicity by β-lactamase producing strains, strengths
its value within the antibiotic armamentarium. Despite
there is a lack of CLSI/EUCAST susceptibility breakpoints,
the first decade of the present century has provided a
plethora of pharmacodynamic studies with cefditoren, fo-
cused not only on activity/efficacy prediction but also on
countering selection and diffusion of resistance, which
support its role in the treatment of infections caused by
respiratory human-adapted pathogens, thus filling the
traditional gap remaining in antibiotic development [146]
by an active post-marketing investigational task [147, 148].
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