Social and environmental context
The Piquiá de Baixo community, today consisting of about 320 families and 1100 individuals, began taking shape in the 1960s. Close to three decades later, people here suddenly saw a vast area of their neighborhood turn into a major industrial complex tied to the Greater Carajás Program, a government-sponsored project managed by what used to be a national mining corporation, Vale do Rio Doce, today a private multinational company known as Vale S.A. Since its inception in the late 1980s, the project has turned the Carajás region, in the state of Pará, into a massive supply center of iron ore and other minerals destined almost entirely to foreign markets and involving a large area in north-eastern Brazil in terms of transportation and processing, both of which generating significant air pollution. In fact, every day the materials extracted from the Carajás mining complex travel along a 900 km railway, managed by Vale S.A. under a public concession contract, all the way to the São Luís harbor in the neighboring state of Maranhão, where they are then loaded onto cargo ships for export. In addition, about 3 % of the iron ore that travels along the so-called “Carajás corridor” reaches the São Luís harbor in processed form, thanks to exclusive sales agreements between Vale S.A. and companies based in Marabá, Açailândia, and Bacabeira that are specialized in converting raw iron ore into pig iron, the first step of the steel manufacturing cycle. In all three cities, the industrial area generates air pollution both through production and through transportation of material to and from the Carajás railroad.
Açailândia’s industrial area was built right next to the Piquiá de Baixo neighborhood. Today, it consists of five steel plants that include 14 blast furnaces built at the beginning of the Greater Carajás Program in the late 1980s, plus three power plants and one cement plant that were added subsequently. This immense industrial complex sits in close proximity the local public school and private homes: the average distance is 400 m, with the closest homes only 50 m away and sits in close proximity to residential homes.
At the onset of our study, we asked the local and state health board permission to consult community health records, backed by the International Federation of Human Rights (FIDH). However, we found the records to be incomplete and an unreliable source of quantifiable data [8]. There are, however, a number of court-mandated reports and surveys connected with a class action lawsuit that is being carried forth by Piquiá residents against the neighboring industrial complex, which describe the environmental and health hazards associated with the area’s industrial cycle.
In particular, according to an environmental evaluation mandated by the Court of Law of Acailândia in 2007, the “cohabitation” between the industrial complex and the local community is unsustainable for a number of reasons, including the impact of fine particulate matter and gases released by the blast furnaces, which run on a continuous cycle and without the use of chemical filters or gas incinerators [9].
Besides pollution produced directly by the industrial complex, Piquiá residents incur in further exposure to toxic contaminants in connection to the transportation of raw and processed material along the stretches of the Carajás Railroad and federal highway BR 222 that run alongside their neighborhood. In fact, the railway carries over 300,000 tons of iron ore on a daily basis, while the local road connecting to the highway supports the everyday traffic of dozens of trucks that arrive to the processing plant carrying with charcoal and raw iron ore and leave loaded with either processed iron directed to the railroad or with waste material and dust destined to open air dumps that are scattered throughout the area (Fig. 1).
The health risks associated with air pollution become exponentially dangerous also in light of the socio-economic conditions of the resident population. In fact, over half of the houses in the neighborhood (54 %) are made of wood, which offers limited protection from dust infiltrations and another 12 % are made of mixed materials (wood, mud, and bricks), while brick and stone buildings amount to only 34 % of all homes [10].
Moreover, regardless of the type of construction, all homes are small (60 square meters on average) and have limited ventilation, which causes the dust to be a persistent factor of daily life, outdoor and indoor. Another aggravating factor in terms of respiratory risks is length of exposure to air pollution: 51 % of Piquiá families have been living here for a period ranging from 10 to 40 years and 43 % for a period ranging from 6 to 10 years [9]. Finally, spontaneous relocation is not an option for the majority of residents, considering that 35 % of household heads make less than the Brazilian minimum monthly salary (less than 200 euros) and 38 % makes less than twice this amount [11].
A health assessment report, requested by the Office of Public Defense of the State of Maranhão (Defensoria Pública Estadual del Maranhão) in June of 2011, found 41 % of analyzed subjects to be afflicted by respiratory problems and drew the conclusion that there is a significant correlation between respiratory illness and poor air quality in Piquiá de Baixo [12]. Another survey conducted by the FIDH in 2010 asked residents to fill out self-certified health questionnaires, listing, among other things, their top five health problems. In every case, three out the five problems were of a respiratory nature; specifically, 65 % of participant subjects claimed to suffer from pharyngeal problems, 64 % from cough and mucus secretions, and 53 % from general respiratory issues [13].
Methodology of the study
The study on which this preliminary report is based aimed to follow up on the above mentioned surveys by assessing the incidence of respiratory pathologies among Piquiá residents in connection to high levels of air pollution generated by the local iron-processing complex.
Data collection consisted in recording the medical history of participant subjects through questionnaires, concentrating on cardiovascular and respiratory pathologies, and assessing respiratory functions through simple spirometry tests, using a MicroLab Carefusion spirometer with Spirometry PC MicroMedical software, according to the latest international guidelines for forced expiratory procedures performed by participant subjects meeting the latest international guidelines for spirometry testing [14].
The study was based on a cross-sectional sample of the Piquiá de Baixo neighborhood population, targeting every household and every person aged 16 or older over a limited period of time (July 15–August 5, 2013).
The study has been approved by the Ethical Committee of the IRCCS Foundation, National Cancer Institute of Milan, Italy. All subjects provided informed consent to the participation; the purpose of the study and the spirometry procedure were explained to all participants with the support of the local community action organization.
The study was divided into two phases. In the first phase, a specialized technician of the IRCCS Foundation/National Cancer Institute of Milan, Italy, met with community organization activists to illustrate the methods of data collection and research objectives. Members of the organization then led the technician from home to home, acting as mediators between her role as investigator and the role of residents as research subjects and assisting in the completion of medical history questionnaires and the performance of spirometry tests.
This first phase accounted for 100 % of questionnaires collected and 70 % of all spirometry tests performed. The remaining 30 % of tests was carried out in the second phase by a local professional nurse. Quality of the data was superimposable between the two assessors.
Values of forced vital capacity (FVC), expiratory volume in the first second (FEV1), and Tiffeneau index (FEV1/FVC) have been expressed as a percentage of the predicted normal values, taking Brazilian theoretical values as reference [15]. Spirometric data was interpreted with consideration for restrictive abnormalities (simple spirometry tests with FEV1/FVC > 0.7 and FVC < 80 %) and obstructive alterations (simple spirometry tests with FEV1/FVC < 0.7 and FEV1% < 80 %) [16]. The Department of Respiratory Physiopathology of the National Cancer Institute of Milan contributed to data analysis.